EconPapers    
Economics at your fingertips  
 

Estimating densities with non‐linear support by using Fisher–Gaussian kernels

Minerva Mukhopadhyay, Didong Li and David B. Dunson

Journal of the Royal Statistical Society Series B, 2020, vol. 82, issue 5, 1249-1271

Abstract: Current tools for multivariate density estimation struggle when the density is concentrated near a non‐linear subspace or manifold. Most approaches require the choice of a kernel, with the multivariate Gaussian kernel by far the most commonly used. Although heavy‐tailed and skewed extensions have been proposed, such kernels cannot capture curvature in the support of the data. This leads to poor performance unless the sample size is very large relative to the dimension of the data. The paper proposes a novel generalization of the Gaussian distribution, which includes an additional curvature parameter. We refer to the proposed class as Fisher–Gaussian kernels, since they arise by sampling from a von Mises–Fisher density on the sphere and adding Gaussian noise. The Fisher–Gaussian density has an analytic form and is amenable to straightforward implementation within Bayesian mixture models by using Markov chain Monte Carlo sampling. We provide theory on large support and illustrate gains relative to competitors in simulated and real data applications.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/rssb.12390

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:82:y:2020:i:5:p:1249-1271

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:82:y:2020:i:5:p:1249-1271