Small area estimation with linked data
N. Salvati,
E. Fabrizi,
M. G. Ranalli and
R. L. Chambers
Journal of the Royal Statistical Society Series B, 2021, vol. 83, issue 1, 78-107
Abstract:
Data linkage can be used to combine values of the variable of interest from a national survey with values of auxiliary variables obtained from another source, such as a population register, for use in small area estimation. However, linkage errors can induce bias when fitting regression models; moreover, they can create non‐representative outliers in the linked data in addition to the presence of potential representative outliers. In this paper, we adopt a secondary analyst’s point of view, assuming that limited information is available on the linkage process, and develop small area estimators based on linear mixed models and M‐quantile models to accommodate linked data containing a mix of both types of outliers. We illustrate the properties of these small area estimators, as well as estimators of their mean squared error, by means of model‐based and design‐based simulation experiments. We further illustrate the proposed methodology by applying it to linked data from the European Survey on Income and Living Conditions and the Italian integrated archive of economic and demographic micro data in order to obtain estimates of the average equivalised income for labour market areas in central Italy.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/rssb.12401
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:83:y:2021:i:1:p:78-107
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().