Anchor regression: Heterogeneous data meet causality
Dominik Rothenhäusler,
Nicolai Meinshausen,
Peter Bühlmann and
Jonas Peters
Journal of the Royal Statistical Society Series B, 2021, vol. 83, issue 2, 215-246
Abstract:
We consider the problem of predicting a response variable from a set of covariates on a data set that differs in distribution from the training data. Causal parameters are optimal in terms of predictive accuracy if in the new distribution either many variables are affected by interventions or only some variables are affected, but the perturbations are strong. If the training and test distributions differ by a shift, causal parameters might be too conservative to perform well on the above task. This motivates anchor regression, a method that makes use of exogenous variables to solve a relaxation of the ‘causal’ minimax problem by considering a modification of the least‐squares loss. The procedure naturally provides an interpolation between the solutions of ordinary least squares (OLS) and two‐stage least squares. We prove that the estimator satisfies predictive guarantees in terms of distributional robustness against shifts in a linear class; these guarantees are valid even if the instrumental variable assumptions are violated. If anchor regression and least squares provide the same answer (‘anchor stability’), we establish that OLS parameters are invariant under certain distributional changes. Anchor regression is shown empirically to improve replicability and protect against distributional shifts.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://doi.org/10.1111/rssb.12398
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:83:y:2021:i:2:p:215-246
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().