Estimation and clustering in popularity adjusted block model
Majid Noroozi,
Ramchandra Rimal and
Marianna Pensky
Journal of the Royal Statistical Society Series B, 2021, vol. 83, issue 2, 293-317
Abstract:
The paper considers the Popularity Adjusted Block model (PABM) introduced by Sengupta and Chen (Journal of the Royal Statistical Society Series B, 2018, 80, 365–386). We argue that the main appeal of the PABM is the flexibility of the spectral properties of the graph which makes the PABM an attractive choice for modelling networks that appear in biological sciences. We expand the theory of PABM to the case of an arbitrary number of communities which possibly grows with a number of nodes in the network and is not assumed to be known. We produce estimators of the probability matrix and of the community structure and, in addition, provide non‐asymptotic upper bounds for the estimation and the clustering errors. We use the Sparse Subspace Clustering (SSC) approach for partitioning the network into communities, the approach that, to the best of our knowledge, has not been used for the clustering network data. The theory is supplemented by a simulation study. In addition, we show advantages of the PABM for modelling a butterfly similarity network and a human brain functional network.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/rssb.12410
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:83:y:2021:i:2:p:293-317
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().