EconPapers    
Economics at your fingertips  
 

Nonparametric density estimation over complicated domains

Federico Ferraccioli, Eleonora Arnone, Livio Finos, James O. Ramsay and Laura M. Sangalli

Journal of the Royal Statistical Society Series B, 2021, vol. 83, issue 2, 346-368

Abstract: We propose a nonparametric method for density estimation over (possibly complicated) spatial domains. The method combines a likelihood approach with a regularization based on a differential operator. We demonstrate the good inferential properties of the method. Moreover, we develop an estimation procedure based on advanced numerical techniques, and in particular making use of finite elements. This ensures high computational efficiency and enables great flexibility. The proposed method efficiently deals with data scattered over regions having complicated shapes, featuring complex boundaries, sharp concavities or holes. Moreover, it captures very well complicated signals having multiple modes with different directions and intensities of anisotropy. We show the comparative advantages of the proposed approach over state of the art methods, in simulation studies and in an application to the study of criminality in the city of Portland, Oregon.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/rssb.12415

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:83:y:2021:i:2:p:346-368

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:83:y:2021:i:2:p:346-368