EconPapers    
Economics at your fingertips  
 

GGM knockoff filter: False discovery rate control for Gaussian graphical models

Jinzhou Li and Marloes H. Maathuis

Journal of the Royal Statistical Society Series B, 2021, vol. 83, issue 3, 534-558

Abstract: We propose a new method to learn the structure of a Gaussian graphical model with finite sample false discovery rate control. Our method builds on the knockoff framework of Barber and Candès for linear models. We extend their approach to the graphical model setting by using a local (node‐based) and a global (graph‐based) step: we construct knockoffs and feature statistics for each node locally, and then solve a global optimization problem to determine a threshold for each node. We then estimate the neighbourhood of each node, by comparing its feature statistics to its threshold, resulting in our graph estimate. Our proposed method is very flexible, in the sense that there is freedom in the choice of knockoffs, feature statistics and the way in which the final graph estimate is obtained. For any given data set, it is not clear a priori what choices of these hyperparameters are optimal. We therefore use a sample‐splitting‐recycling procedure that first uses half of the samples to select the hyperparameters, and then learns the graph using all samples, in such a way that the finite sample FDR control still holds. We compare our method to several competitors in simulations and on a real data set.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/rssb.12430

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:83:y:2021:i:3:p:534-558

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:83:y:2021:i:3:p:534-558