EconPapers    
Economics at your fingertips  
 

Inference on the history of a randomly growing tree

Harry Crane and Min Xu

Journal of the Royal Statistical Society Series B, 2021, vol. 83, issue 4, 639-668

Abstract: The spread of infectious disease in a human community or the proliferation of fake news on social media can be modelled as a randomly growing tree‐shaped graph. The history of the random growth process is often unobserved but contains important information such as the source of the infection. We consider the problem of statistical inference on aspects of the latent history using only a single snapshot of the final tree. Our approach is to apply random labels to the observed unlabelled tree and analyse the resulting distribution of the growth process, conditional on the final outcome. We show that this conditional distribution is tractable under a shape exchangeability condition, which we introduce here, and that this condition is satisfied for many popular models for randomly growing trees such as uniform attachment, linear preferential attachment and uniform attachment on a D‐regular tree. For inference of the root under shape exchangeability, we propose O(n log n) time algorithms for constructing confidence sets with valid frequentist coverage as well as bounds on the expected size of the confidence sets. We also provide efficient sampling algorithms which extend our methods to a wide class of inference problems.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/rssb.12428

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:83:y:2021:i:4:p:639-668

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:83:y:2021:i:4:p:639-668