Leveraging the Fisher randomization test using confidence distributions: Inference, combination and fusion learning
Xiaokang Luo,
Tirthankar Dasgupta,
Minge Xie and
Regina Y. Liu
Journal of the Royal Statistical Society Series B, 2021, vol. 83, issue 4, 777-797
Abstract:
The flexibility and wide applicability of the Fisher randomization test (FRT) make it an attractive tool for assessment of causal effects of interventions from modern‐day randomized experiments that are increasing in size and complexity. This paper provides a theoretical inferential framework for FRT by establishing its connection with confidence distributions. Such a connection leads to development’s of (i) an unambiguous procedure for inversion of FRTs to generate confidence intervals with guaranteed coverage, (ii) new insights on the effect of size of the Monte Carlo sample on the estimation of a p‐value curve and (iii) generic and specific methods to combine FRTs from multiple independent experiments with theoretical guarantees. Our developments pertain to finite sample settings but have direct extensions to large samples. Simulations and a case example demonstrate the benefit of these new developments.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/rssb.12429
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:83:y:2021:i:4:p:777-797
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().