Synthetic controls with staggered adoption
Eli Ben‐Michael,
Avi Feller and
Jesse Rothstein
Journal of the Royal Statistical Society Series B, 2022, vol. 84, issue 2, 351-381
Abstract:
Staggered adoption of policies by different units at different times creates promising opportunities for observational causal inference. Estimation remains challenging, however, and common regression methods can give misleading results. A promising alternative is the synthetic control method (SCM), which finds a weighted average of control units that closely balances the treated unit’s pre‐treatment outcomes. In this paper, we generalize SCM, originally designed to study a single treated unit, to the staggered adoption setting. We first bound the error for the average effect and show that it depends on both the imbalance for each treated unit separately and the imbalance for the average of the treated units. We then propose ‘partially pooled’ SCM weights to minimize a weighted combination of these measures; approaches that focus only on balancing one of the two components can lead to bias. We extend this approach to incorporate unit‐level intercept shifts and auxiliary covariates. We assess the performance of the proposed method via extensive simulations and apply our results to the question of whether teacher collective bargaining leads to higher school spending, finding minimal impacts. We implement the proposed method in the augsynth R package.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
https://doi.org/10.1111/rssb.12448
Related works:
Working Paper: Synthetic Controls with Staggered Adoption (2021) 
Working Paper: Synthetic Controls with Staggered Adoption (2021) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:84:y:2022:i:2:p:351-381
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().