Efficient evaluation of prediction rules in semi‐supervised settings under stratified sampling
Jessica Gronsbell,
Molei Liu,
Lu Tian and
Tianxi Cai
Journal of the Royal Statistical Society Series B, 2022, vol. 84, issue 4, 1353-1391
Abstract:
In many contemporary applications, large amounts of unlabelled data are readily available while labelled examples are limited. There has been substantial interest in semi‐supervised learning (SSL) which aims to leverage unlabelled data to improve estimation or prediction. However, current SSL literature focuses primarily on settings where labelled data are selected uniformly at random from the population of interest. Stratified sampling, while posing additional analytical challenges, is highly applicable to many real‐world problems. Moreover, no SSL methods currently exist for estimating the prediction performance of a fitted model when the labelled data are not selected uniformly at random. In this paper, we propose a two‐step SSL procedure for evaluating a prediction rule derived from a working binary regression model based on the Brier score and overall misclassification rate under stratified sampling. In step I, we impute the missing labels via weighted regression with nonlinear basis functions to account for stratified sampling and to improve efficiency. In step II, we augment the initial imputations to ensure the consistency of the resulting estimators regardless of the specification of the prediction model or the imputation model. The final estimator is then obtained with the augmented imputations. We provide asymptotic theory and numerical studies illustrating that our proposals outperform their supervised counterparts in terms of efficiency gain. Our methods are motivated by electronic health record (EHR) research and validated with a real data analysis of an EHR‐based study of diabetic neuropathy.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssb.12502
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:84:y:2022:i:4:p:1353-1391
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().