EconPapers    
Economics at your fingertips  
 

Functional peaks‐over‐threshold analysis

Raphaël de Fondeville and Anthony C. Davison

Journal of the Royal Statistical Society Series B, 2022, vol. 84, issue 4, 1392-1422

Abstract: Peaks‐over‐threshold analysis using the generalised Pareto distribution is widely applied in modelling tails of univariate random variables, but much information may be lost when complex extreme events are studied using univariate results. In this paper, we extend peaks‐over‐threshold analysis to extremes of functional data. Threshold exceedances defined using a functional r are modelled by the generalised r‐Pareto process, a functional generalisation of the generalised Pareto distribution that covers the three classical regimes for the decay of tail probabilities, and that is the only possible continuous limit for r‐exceedances of a properly rescaled process. We give construction rules, simulation algorithms and inference procedures for generalised r‐Pareto processes, discuss model validation and apply the new methodology to extreme European windstorms and heavy spatial rainfall.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/rssb.12498

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:84:y:2022:i:4:p:1392-1422

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:84:y:2022:i:4:p:1392-1422