EconPapers    
Economics at your fingertips  
 

Analysis of distance for structured multivariate data and extensions to multivariate analysis of variance

J. C. Gower and W. J. Krzanowski

Journal of the Royal Statistical Society Series C, 1999, vol. 48, issue 4, 505-519

Abstract: Many data sets in practice fit a multivariate analysis of variance (MANOVA) structure but are not consonant with MANOVA assumptions. One particular such data set from economics is described. This set has a 24 factorial design with eight variables measured on each individual, but the application of MANOVA seems inadvisable given the highly skewed nature of the data. To establish a basis for analysis, we examine the structure of distance matrices in the presence of a priori grouping of units and show how the total squared distance among the units of a multivariate data set can be partitioned according to the factors of an external classification. The partitioning is exactly analogous to that in the univariate analysis of variance. It therefore provides a framework for the analysis of any data set whose structure conforms to that of MANOVA, but which for various reasons cannot be analysed by this technique. Descriptive aspects of the technique are considered in detail, and inferential questions are tackled via randomization tests. This approach provides a satisfactory analysis of the economics data.

Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
https://doi.org/10.1111/1467-9876.00168

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:48:y:1999:i:4:p:505-519

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:48:y:1999:i:4:p:505-519