On the use of corrections for overdispersion
J. K. Lindsey
Journal of the Royal Statistical Society Series C, 1999, vol. 48, issue 4, 553-561
Abstract:
In studying fluctuations in the size of a blackgrouse (Tetrao tetrix) population, an autoregressive model using climatic conditions appears to follow the change quite well. However, the deviance of the model is considerably larger than its number of degrees of freedom. A widely used statistical rule of thumb holds that overdispersion is present in such situations, but model selection based on a direct likelihood approach can produce opposing results. Two further examples, of binomial and of Poisson data, have models with deviances that are almost twice the degrees of freedom and yet various overdispersion models do not fit better than the standard model for independent data. This can arise because the rule of thumb only considers a point estimate of dispersion, without regard for any measure of its precision. A reasonable criterion for detecting overdispersion is that the deviance be at least twice the number of degrees of freedom, the familiar Akaike information criterion, but the actual presence of overdispersion should then be checked by some appropriate modelling procedure.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/1467-9876.00171
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:48:y:1999:i:4:p:553-561
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().