EconPapers    
Economics at your fingertips  
 

Detecting homogeneous segments in DNA sequences by using hidden Markov models

R. J. Boys, D. A. Henderson and D. J. Wilkinson

Journal of the Royal Statistical Society Series C, 2000, vol. 49, issue 2, 269-285

Abstract: In recent years there has been a rapid growth in the amount of DNA being sequenced and in its availability through genetic databases. Statistical techniques which identify structure within these sequences can be of considerable assistance to molecular biologists particularly when they incorporate the discrete nature of changes caused by evolutionary processes. This paper focuses on the detection of homogeneous segments within heterogeneous DNA sequences. In particular, we study an intron from the chimpanzee α‐fetoprotein gene; this protein plays an important role in the embryonic development of mammals. We present a Bayesian solution to this segmentation problem using a hidden Markov model implemented by Markov chain Monte Carlo methods. We consider the important practical problem of specifying informative prior knowledge about sequences of this type. Two Gibbs sampling algorithms are contrasted and the sensitivity of the analysis to the prior specification is investigated. Model selection and possible ways to overcome the label switching problem are also addressed. Our analysis of intron 7 identifies three distinct homogeneous segment types, two of which occur in more than one region, and one of which is reversible.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://doi.org/10.1111/1467-9876.00191

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:49:y:2000:i:2:p:269-285

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:49:y:2000:i:2:p:269-285