A family of models for uniform and serial dependence in repeated measurements studies
J. K. Lindsey
Journal of the Royal Statistical Society Series C, 2000, vol. 49, issue 3, 343-357
Abstract:
Data arising from a randomized double‐masked clinical trial for multiple sclerosis have provided particularly variable longitudinal repeated measurements responses. Specific models for such data, other than those based on the multivariate normal distribution, would be a valuable addition to the applied statistician's toolbox. A useful family of multivariate distributions can be generated by substituting the integrated intensity of one distribution into a second (outer) distribution. The parameters in the second distribution are then used to create a dependence structure among observations on a unit. These may either be a form of serial dependence for longitudinal data or of uniform dependence within clusters. These are respectively analogous to the Kalman filter of state space models and to copulas, but they have the major advantage that they do not require any explicit integration. One useful outer distribution for constructing such multivariate distributions is the Pareto distribution. Certain special models based on it have previously been used in event history analysis, but those considered here have much wider application.
Date: 2000
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/1467-9876.00196
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:49:y:2000:i:3:p:343-357
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().