The average area under correlated receiver operating characteristic curves: a nonparametric approach based on generalized two‐sample Wilcoxon statistics
Mei‐Ling Ting Lee and
Bernard A. Rosner
Journal of the Royal Statistical Society Series C, 2001, vol. 50, issue 3, 337-344
Abstract:
It is well known that, when sample observations are independent, the area under the receiver operating characteristic (ROC) curve corresponds to the Wilcoxon statistics if the area is calculated by the trapezoidal rule. Correlated ROC curves arise often in medical research and have been studied by various parametric methods. On the basis of the Mann–Whitney U‐statistics for clustered data proposed by Rosner and Grove, we construct an average ROC curve and derive nonparametric methods to estimate the area under the average curve for correlated ROC curves obtained from multiple readers. For the more complicated case where, in addition to multiple readers examining results on the same set of individuals, two or more diagnostic tests are involved, we derive analytic methods to compare the areas under correlated average ROC curves for these diagnostic tests. We demonstrate our methods in an example and compare our results with those obtained by other methods. The nonparametric average ROC curve and the analytic methods that we propose are easy to explain and simple to implement.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/1467-9876.00238
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:50:y:2001:i:3:p:337-344
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().