A generalized estimating equation approach to modelling incompatible data formats with covariate measurement error: application to human immunodeficiency virus immune markers
J Kowalski and
X. M Tu
Journal of the Royal Statistical Society Series C, 2002, vol. 51, issue 1, 91-114
Abstract:
The integration of technological advances into research studies often raises an issue of incompatibility of data. This problem is common to longitudinal and multicentre studies, taking the form of changes in the definitions, acquisition of data or measuring instruments of some study variables. In our case of studying the relationship between a marker of immune response to human immunodeficiency virus and human immunodeficiency virus infection status, using data from the Multi‐Center AIDS Cohort Study, changes in the manufactured tests used for both variables occurred throughout the study, resulting in data with different manufactured scales. In addition, the latent nature of the immune response of interest necessitated a further consideration of a measurement error component. We address the general issue of incompatibility of data, together with the issue of covariate measurement error, in a unified, generalized linear model setting with inferences based on the generalized estimating equation framework. General conditions are constructed to ensure consistent estimates and their variances for the primary model of interest, with the asymptotic behaviour of resulting estimates examined under a variety of modelling scenarios. The approach is illustrated by modelling a repeated ordinal response with incompatible formats, as a function of a covariate with incompatible formats and measurement error, based on the Multi‐Center AIDS Cohort Study data.
Date: 2002
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/1467-9876.04883
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:51:y:2002:i:1:p:91-114
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().