EconPapers    
Economics at your fingertips  
 

Anisotropic spatial sampling designs for urban pollution

Giuseppe Arbia () and Giovanni Lafratta

Journal of the Royal Statistical Society Series C, 2002, vol. 51, issue 2, 223-234

Abstract: Summary. Isotropic processes form an inadequate basis in modelling many spatially distributed data. In particular environmental phenomena often have strong anisotropic spatial variation, especially when the regions monitored are very large. We extend a recently proposed optimal sampling strategy by assuming a spatial anisotropic random field as the basis for the data generator mechanism. The procedure is based on a geographical space transformation indicated by Sampson and Guttorp. We discuss the optimal design and we develop a sequential procedure for selecting a network of monitoring stations in environmental surveys. Some data on sulphur dioxide pollution in Padua (Italy) are analysed to illustrate the method.

Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://doi.org/10.1111/1467-9876.00265

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:51:y:2002:i:2:p:223-234

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:51:y:2002:i:2:p:223-234