Minimum distance estimation of the distribution functions of stochastically ordered random variables
Ronald E. Gangnon and
William N. King
Journal of the Royal Statistical Society Series C, 2002, vol. 51, issue 4, 485-492
Abstract:
Stochastic ordering of distributions can be a natural and minimal restriction in an estimation problem. Such restrictions occur naturally in several settings in medical research. The standard estimator in such settings is the nonparametric maximum likelihood estimator (NPMLE). The NPMLE is known to be biased, and, even when the empirical cumulative distribution functions nearly satisfy the stochastic orderings, the NPMLE and the empirical cumulative distribution functions may differ substantially. In many settings, this can make the NPMLE seem to be an unappealing estimator. As an alternative to the NPMLE, we propose a minimum distance estimator of distribution functions subject to stochastic ordering constraints. Consistency of the minimum distance estimator is proved, and superior performance is demonstrated through a simulation study. We demonstrate the use of the methodology to assess the reproducibility of gradings of nuclear sclerosis from fundus photographs.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/1467-9876.00282
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:51:y:2002:i:4:p:485-492
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().