Forecasting composite indicators with anticipated information: an application to the industrial production index
Francesco Battaglia and
Livio Fenga
Journal of the Royal Statistical Society Series C, 2003, vol. 52, issue 3, 279-290
Abstract:
Summary. Many economic and social phenomena are measured by composite indicators computed as weighted averages of a set of elementary time series. Often data are collected by means of large sample surveys, and processing takes a long time, whereas the values of some elementary component series may be available a considerable time before the others and may be used for forecasting the composite index. This problem is addressed within the framework of prediction theory for stochastic processes. A method is proposed for exploiting anticipated information to minimize the mean‐square forecast error, and for selecting the most useful elementary series. An application to the Italian general industrial production index is illustrated, which demonstrates that knowledge of anticipated values of some, or even just one, component series may reduce the forecast error considerably.
Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/1467-9876.00404
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:52:y:2003:i:3:p:279-290
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().