Bayesian updating of atmospheric dispersion after a nuclear accident
Konstadinos Politis and
Lennart Robertson
Journal of the Royal Statistical Society Series C, 2004, vol. 53, issue 4, 583-600
Abstract:
Summary. We consider a Bayesian forecasting system to predict the dispersal of contamination on a large scale grid in the event of an accidental release of radioactivity. The statistical model is built on a physical model for atmospheric dispersion and transport called MATCH. Our spatiotemporal model is a dynamic linear model where the state parameters are the (essentially, deterministic) predictions of MATCH; the distributions of these are updated sequentially in the light of monitoring data. One of the distinguishing features of the model is that the number of these parameters is very large (typically several hundreds of thousands) and we discuss practical issues arising in its implementation as a realtime model. Our procedures have been checked against a variational approach which is used widely in the atmospheric sciences. The results of the model are applied to test data from a tracer experiment.
Date: 2004
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2004.04837.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:53:y:2004:i:4:p:583-600
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().