Nonparametric estimation of the hazard function by using a model selection method: estimation of cancer deaths in Hiroshima atomic bomb survivors
M. L. Martin‐Magniette
Journal of the Royal Statistical Society Series C, 2005, vol. 54, issue 2, 317-331
Abstract:
Summary. Controversy has intensified regarding the death‐rate from cancer that is induced by a dose of radiation. In the models that are usually considered the hazard function is an increasing function of the dose of radiation. Such models can mask local variations. We consider the models of excess relative risk and of absolute risk and propose a nonparametric estimation of the effect of the dose by using a model selection procedure. This estimation deals with stratified data. We approximate the function of the dose by a collection of splines and select the best one according to the Akaike information criterion. In the same way between the models of excess relative risk or excess absolute risk, we choose the model that best fits the data. We propose a bootstrap method for calculating a pointwise confidence interval of the dose function. We apply our method for estimating the solid cancer and leukaemia death hazard functions to Hiroshima.
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2005.00486.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:54:y:2005:i:2:p:317-331
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().