EconPapers    
Economics at your fingertips  
 

Incorporating gene functional annotations in detecting differential gene expression

Wei Pan

Journal of the Royal Statistical Society Series C, 2006, vol. 55, issue 3, 301-316

Abstract: Summary. The importance of incorporating existing biological knowledge, such as gene functional annotations in gene ontology, in analysing high throughput genomic and proteomic data is being increasingly recognized. In the context of detecting differential gene expression, however, the current practice of using gene annotations is limited primarily to validations. Here we take a direct approach to incorporating gene annotations into mixture models for analysis. First, in contrast with a standard mixture model assuming that each gene of the genome has the same distribution, we study stratified mixture models allowing genes with different annotations to have different distributions, such as prior probabilities. Second, rather than treating parameters in stratified mixture models independently, we propose a hierarchical model to take advantage of the hierarchical structure of most gene annotation systems, such as gene ontology. We consider a simplified implementation for the proof of concept. An application to a mouse microarray data set and a simulation study demonstrate the improvement of the two new approaches over the standard mixture model.

Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/1467-9876.00066-i1

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:55:y:2006:i:3:p:301-316

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:55:y:2006:i:3:p:301-316