EconPapers    
Economics at your fingertips  
 

Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring

Tao Chen, Julian Morris and Elaine Martin

Journal of the Royal Statistical Society Series C, 2006, vol. 55, issue 5, 699-715

Abstract: Summary. The primary goal of multivariate statistical process performance monitoring is to identify deviations from normal operation within a manufacturing process. The basis of the monitoring schemes is historical data that have been collected when the process is running under normal operating conditions. These data are then used to establish confidence bounds to detect the onset of process deviations. In contrast with the traditional approaches that are based on the Gaussian assumption, this paper proposes the application of the infinite Gaussian mixture model (GMM) for the calculation of the confidence bounds, thereby relaxing the previous restrictive assumption. The infinite GMM is a special case of Dirichlet process mixtures and is introduced as the limit of the finite GMM, i.e. when the number of mixtures tends to ∞. On the basis of the estimation of the probability density function, via the infinite GMM, the confidence bounds are calculated by using the bootstrap algorithm. The methodology proposed is demonstrated through its application to a simulated continuous chemical process, and a batch semiconductor manufacturing process.

Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2006.00560.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:55:y:2006:i:5:p:699-715

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:55:y:2006:i:5:p:699-715