EconPapers    
Economics at your fingertips  
 

Using a mixture model for multiple imputation in the presence of outliers: the ‘Healthy for life’ project

Michael R. Elliott and Nicolas Stettler

Journal of the Royal Statistical Society Series C, 2007, vol. 56, issue 1, 63-78

Abstract: Summary. We consider the problem of obtaining population‐based inference in the presence of missing data and outliers in the context of estimating the prevalence of obesity and body mass index measures from the ‘Healthy for life’ study. Identifying multiple outliers in a multivariate setting is problematic because of problems such as masking, in which groups of outliers inflate the covariance matrix in a fashion that prevents their identification when included, and swamping, in which outliers skew covariances in a fashion that makes non‐outlying observations appear to be outliers. We develop a latent class model that assumes that each observation belongs to one of K unobserved latent classes, with each latent class having a distinct covariance matrix. We consider the latent class covariance matrix with the largest determinant to form an ‘outlier class’. By separating the covariance matrix for the outliers from the covariance matrices for the remainder of the data, we avoid the problems of masking and swamping. As did Ghosh‐Dastidar and Schafer, we use a multiple‐imputation approach, which allows us simultaneously to conduct inference after removing cases that appear to be outliers and to promulgate uncertainty in the outlier status through the model inference. We extend the work of Ghosh‐Dastidar and Schafer by embedding the outlier class in a larger mixture model, consider penalized likelihood and posterior predictive distributions to assess model choice and model fit, and develop the model in a fashion to account for the complex sample design. We also consider the repeated sampling properties of the multiple imputation removal of outliers.

Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2007.00565.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:56:y:2007:i:1:p:63-78

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:56:y:2007:i:1:p:63-78