Trend estimation in extremes of synthetic North Sea surges
Adam Butler,
Janet E. Heffernan,
Jonathan A. Tawn and
Roger A. Flather
Journal of the Royal Statistical Society Series C, 2007, vol. 56, issue 4, 395-414
Abstract:
Summary. Mechanistic models for complex atmospheric and hydrological processes are often used to simulate extreme natural events, usually to quantify the risks that are associated with these events. We use novel extreme value methods to analyse the statistical properties of output from a numerical storm surge model for the North Sea. The ‘model data’ constitute a reconstruction of the storm surge climate for the period 1955–2000 based on a high quality meteorological data set and constitute the only available source of information on surge elevations at offshore and unmonitored coastal locations over this period. Previous studies have used extreme value methods to analyse storm surge characteristics, but we can extend and improve on these analyses by using a local likelihood approach to provide a non‐parametric description of temporal and spatial variations in the magnitude and frequency of storm surge events.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2007.00583.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:56:y:2007:i:4:p:395-414
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().