EconPapers    
Economics at your fingertips  
 

A Bayesian model for longitudinal count data with non‐ignorable dropout

Niko A. Kaciroti, Trivellore E. Raghunathan, M. Anthony Schork and Noreen M. Clark

Journal of the Royal Statistical Society Series C, 2008, vol. 57, issue 5, 521-534

Abstract: Summary. Asthma is an important chronic disease of childhood. An intervention programme for managing asthma was designed on principles of self‐regulation and was evaluated by a randomized longitudinal study. The study focused on several outcomes, and, typically, missing data remained a pervasive problem. We develop a pattern–mixture model to evaluate the outcome of intervention on the number of hospitalizations with non‐ignorable dropouts. Pattern–mixture models are not generally identifiable as no data may be available to estimate a number of model parameters. Sensitivity analyses are performed by imposing structures on the unidentified parameters. We propose a parameterization which permits sensitivity analyses on clustered longitudinal count data that have missing values due to non‐ignorable missing data mechanisms. This parameterization is expressed as ratios between event rates across missing data patterns and the observed data pattern and thus measures departures from an ignorable missing data mechanism. Sensitivity analyses are performed within a Bayesian framework by averaging over different prior distributions on the event ratios. This model has the advantage of providing an intuitive and flexible framework for incorporating the uncertainty of the missing data mechanism in the final analysis.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2008.00628.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:57:y:2008:i:5:p:521-534

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:57:y:2008:i:5:p:521-534