Parametric non‐mixture cure models for schedule finding of therapeutic agents
Changying A. Liu and
Thomas M. Braun
Journal of the Royal Statistical Society Series C, 2009, vol. 58, issue 2, 225-236
Abstract:
Summary. We propose a phase I clinical trial design that seeks to determine the cumulative safety of a series of administrations of a fixed dose of an investigational agent. In contrast with traditional phase I trials that are designed solely to find the maximum tolerated dose of the agent, our design instead identifies a maximum tolerated schedule that includes a maximum tolerated dose as well as a vector of recommended administration times. Our model is based on a non‐mixture cure model that constrains the probability of dose limiting toxicity for all patients to increase monotonically with both dose and the number of administrations received. We assume a specific parametric hazard function for each administration and compute the total hazard of dose limiting toxicity for a schedule as a sum of individual administration hazards. Throughout a variety of settings motivated by an actual study in allogeneic bone marrow transplant recipients, we demonstrate that our approach has excellent operating characteristics and performs as well as the only other currently published design for schedule finding studies. We also present arguments for the preference of our non‐mixture cure model over the existing model.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2008.00660.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:58:y:2009:i:2:p:225-236
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().