Stability analysis of an additive spline model for respiratory health data by using knot removal
Harald Binder and
Willi Sauerbrei
Journal of the Royal Statistical Society Series C, 2009, vol. 58, issue 5, 577-600
Abstract:
Summary. In many settings with possibly non‐linear influence of covariates, such as in the present application with children's respiratory health data, generalized additive models are an attractive choice. Although techniques for fitting these have been extensively investigated, there are fewer results on stability of replication, i.e. stability of fitted model components with respect to perturbations in the data. Nevertheless, this aspect is essential for judging how useful the present model is for understanding predictors of lung function. We therefore investigate existing tools for stability analysis based on bootstrap samples, such as quantities for variability and bias, for our application. Furthermore, as the focus is on models based on B‐splines, knot removal techniques are available. These can help to provide more insight into the stability of local features that are fitted in bootstrap samples. We analyse the bootstrap result matrix via log‐linear models. Specifically, the relationship with respect to local features between the influence functions of potential lung function predictors is investigated.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2009.00668.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:58:y:2009:i:5:p:577-600
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().