EconPapers    
Economics at your fingertips  
 

Bayesian geoadditive sample selection models

Manuel Wiesenfarth and Thomas Kneib

Journal of the Royal Statistical Society Series C, 2010, vol. 59, issue 3, 381-404

Abstract: Summary. Sample selection models attempt to correct for non‐randomly selected data in a two‐model hierarchy where, on the first level, a binary selection equation determines whether a particular observation will be available for the second level, i.e. in the outcome equation. Ignoring the non‐random selection mechanism that is induced by the selection equation may result in biased estimation of the coefficients in the outcome equation. In the application that motivated this research, we analyse relief supply in earthquake‐affected communities in Pakistan, where the decision to deliver goods represents the dependent variable in the selection equation whereas factors that determine the amount of goods supplied are analysed in the outcome equation. In this application, the inclusion of spatial effects is necessary since the available covariate information on the community level is rather scarce. Moreover, the high temporal dynamics underlying the immediate delivery of relief supply after a natural disaster calls for non‐linear, time varying effects. We propose a geoadditive sample selection model that allows us to address these issues in a general Bayesian framework with inference being based on Markov chain Monte Carlo simulation techniques. The model proposed is studied in simulations and applied to the relief supply data from Pakistan.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2009.00698.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:59:y:2010:i:3:p:381-404

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:59:y:2010:i:3:p:381-404