A Bayesian hierarchical approach to ensemble weather forecasting
A. F. Di Narzo and
D. Cocchi
Journal of the Royal Statistical Society Series C, 2010, vol. 59, issue 3, 405-422
Abstract:
Summary. In meteorology, the traditional approach to forecasting employs deterministic models mimicking atmospheric dynamics. Forecast uncertainty due to partial knowledge of the initial conditions is tackled by ensemble predictions systems. Probabilistic forecasting is a relatively new approach which may properly account for all sources of uncertainty. We propose a hierarchical Bayesian model which develops this idea and makes it possible to deal with ensemble predictions systems with non‐identifiable members by using a suitable definition of the second level of the model. An application to Italian small‐scale temperature data is shown.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2009.00700.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:59:y:2010:i:3:p:405-422
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().