Bayesian change‐point analysis for atomic force microscopy and soft material indentation
Daniel Rudoy,
Shelten G. Yuen,
Robert D. Howe and
Patrick J. Wolfe
Journal of the Royal Statistical Society Series C, 2010, vol. 59, issue 4, 573-593
Abstract:
Summary. Material indentation studies, in which a probe is brought into controlled physical contact with an experimental sample, have long been a primary means by which scientists characterize the mechanical properties of materials. More recently, the advent of atomic force microscopy, which operates on the same fundamental principle, has in turn revolutionized the nanoscale analysis of soft biomaterials such as cells and tissues. The paper addresses the inferential problems that are associated with material indentation and atomic force microscopy, through a framework for the change‐point analysis of pre‐contact and post‐contact data that is applicable to experiments across a variety of physical scales. A hierarchical Bayesian model is proposed to account for experimentally observed change‐point smoothness constraints and measurement error variability, with efficient Monte Carlo methods developed and employed to realize inference via posterior sampling for parameters such as Young's modulus, which is a key quantifier of material stiffness. These results are the first to provide the materials science community with rigorous inference procedures and quantification of uncertainty, via optimized and fully automated high throughput algorithms, implemented as the publicly available software package BayesCP. To demonstrate the consistent accuracy and wide applicability of this approach, results are shown for a variety of data sets from both macromaterials and micromaterials experiments—including silicone, neurons and red blood cells—conducted by the authors and others.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2010.00715.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:59:y:2010:i:4:p:573-593
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().