EconPapers    
Economics at your fingertips  
 

A Bayesian model for biclustering with applications

Jian Zhang

Journal of the Royal Statistical Society Series C, 2010, vol. 59, issue 4, 635-656

Abstract: Summary. The paper proposes a Bayesian method for biclustering with applications to gene microarray studies, where we want to cluster genes and experimental conditions simultaneously. We begin by embedding bicluster analysis into the framework of a plaid model with random effects. The corresponding likelihood is then regularized by the hierarchical priors in each layer. The resulting posterior, which is asymptotically equivalent to a penalized likelihood, can attenuate the effect of high dimensionality on cluster predictions. We provide an empirical Bayes algorithm for sampling posteriors, in which we estimate the cluster memberships of all genes and samples by maximizing an explicit marginal posterior of these memberships. The new algorithm makes the estimation of the Bayesian plaid model computationally feasible and efficient. The performance of our procedure is evaluated on both simulated and real microarray gene expression data sets. The numerical results show that our proposal substantially outperforms the original plaid model in terms of misclassification rates across a range of scenarios. Applying our method to two yeast gene expression data sets, we identify several new biclusters which show the enrichment of known annotations of yeast genes.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9876.2010.00716.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:59:y:2010:i:4:p:635-656

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:59:y:2010:i:4:p:635-656