Emulating a gravity model to infer the spatiotemporal dynamics of an infectious disease
Roman Jandarov,
Murali Haran,
Ottar Bjørnstad and
Bryan Grenfell
Journal of the Royal Statistical Society Series C, 2014, vol. 63, issue 3, 423-444
Abstract:
type="main" xml:id="rssc12042-abs-0001">
Probabilistic models for infectious disease dynamics are useful for understanding the mechanism underlying the spread of infection. When the likelihood function for these models is expensive to evaluate, traditional likelihood-based inference may be computationally intractable. Furthermore, traditional inference may lead to poor parameter estimates and the fitted model may not capture important biological characteristics of the observed data. We propose a novel approach for resolving these issues that is inspired by recent work in emulation and calibration for complex computer models. Our motivating example is the gravity time series susceptible–infected–recovered model. Our approach focuses on the characteristics of the process that are of scientific interest. We find a Gaussian process approximation to the gravity model by using key summary statistics obtained from model simulations. We demonstrate via simulated examples that the new approach is computationally expedient, provides accurate parameter inference and results in a good model fit. We apply our method to analyse measles outbreaks in England and Wales in two periods: the prevaccination period from 1944 to 1965 and the vaccination period from 1966 to 1994. On the basis of our results, we can obtain important scientific insights about the transmission of measles. In general, our method is applicable to problems where traditional likelihood-based inference is computationally intractable or produces a poor model fit. It is also an alternative to approximate Bayesian computation when simulations from the model are expensive.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1111/rssc.2014.63.issue-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:63:y:2014:i:3:p:423-444
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().