EconPapers    
Economics at your fingertips  
 

Spatial two-tissue compartment model for dynamic contrast-enhanced magnetic resonance imaging

Julia C. Sommer and Volker J. Schmid

Journal of the Royal Statistical Society Series C, 2014, vol. 63, issue 5, 695-713

Abstract: type="main" xml:id="rssc12057-abs-0001">

In the quantitative analysis of dynamic contrast-enhanced magnetic resonance imaging compartment models allow the uptake of contrast medium to be described with biologically meaningful kinetic parameters. As simple models often fail to describe adequately the observed uptake behaviour, more complex compartment models have been proposed. However, the non-linear regression problem arising from more complex compartment models often suffers from parameter redundancy. We incorporate spatial smoothness on the kinetic parameters of a two-tissue compartment model by imposing Gaussian Markov random-field priors on them. We analyse to what extent this spatial regularization helps to avoid parameter redundancy and to obtain stable parameter point estimates per voxel. Choosing a full Bayesian approach, we obtain posteriors and point estimates by running Markov chain Monte Carlo simulations. The approach proposed is evaluated for simulated concentration time curves as well as for in vivo data from a breast cancer study.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1111/rssc.2014.63.issue-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:63:y:2014:i:5:p:695-713

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:63:y:2014:i:5:p:695-713