Bayesian inference for palaeoclimate with time uncertainty and stochastic volatility
Andrew C. Parnell,
James Sweeney,
Thinh K. Doan,
Michael Salter-Townshend,
Judy R. M. Allen,
Brian Huntley and
John Haslett
Journal of the Royal Statistical Society Series C, 2015, vol. 64, issue 1, 115-138
Abstract:
type="main" xml:id="rssc12065-abs-0001">
We propose and fit a Bayesian model to infer palaeoclimate over several thousand years. The data that we use arise as ancient pollen counts taken from sediment cores together with radiocarbon dates which provide (uncertain) ages. When combined with a modern pollen–climate data set, we can calibrate ancient pollen into ancient climate. We use a normal–inverse Gaussian process prior to model the stochastic volatility of palaeoclimate over time, and we present a novel modularized Markov chain Monte Chain algorithm to enable fast computation. We illustrate our approach with a case-study from Sluggan Moss, Northern Ireland, and provide an R package, Bclim , for use at other sites.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1111/rssc.2014.64.issue-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:64:y:2015:i:1:p:115-138
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().