EconPapers    
Economics at your fingertips  
 

A hybrid model for combining case–control and cohort studies in systematic reviews of diagnostic tests

Yong Chen, Yulun Liu, Jing Ning, Janice Cormier and Haitao Chu

Journal of the Royal Statistical Society Series C, 2015, vol. 64, issue 3, 469-489

Abstract: type="main" xml:id="rssc12087-abs-0001">

Systematic reviews of diagnostic tests often involve a mixture of case–control and cohort studies. The standard methods for evaluating diagnostic accuracy focus only on sensitivity and specificity and ignore the information on disease prevalence that is contained in cohort studies. Consequently, such methods cannot provide estimates of measures related to disease prevalence, such as population-averaged or overall positive and negative predictive values, which reflect the clinical utility of a diagnostic test. We propose a hybrid approach that jointly models the disease prevalence along with diagnostic test sensitivity and specificity in cohort studies, and sensitivity and specificity in case–control studies. To overcome the potential computational difficulties in the standard full likelihood inference of the hybrid model proposed, we propose an alternative inference procedure based on composite likelihood. Such composite-likelihood-based inference does not suffer computational problems and maintains high relative efficiency. In addition, it is more robust to model misspecifications compared with standard full likelihood inference. We apply our approach to a review of the performance of contemporary diagnostic imaging modalities for detecting metastases in patients with melanoma.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1111/rssc.2015.64.issue-3 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:64:y:2015:i:3:p:469-489

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:64:y:2015:i:3:p:469-489