A marginal cure rate proportional hazards model for spatial survival data
Patrick Schnell,
Dipankar Bandyopadhyay,
Brian J. Reich and
Martha Nunn
Journal of the Royal Statistical Society Series C, 2015, vol. 64, issue 4, 673-691
Abstract:
type="main" xml:id="rssc12098-abs-0001">
Dental studies often produce spatially referenced multivariate time-to-event data, such as the time until tooth loss due to periodontal disease. These data are used to identify risk factors that are associated with tooth loss, and to predict outcomes for an individual patient. The rate of spatial referencing can vary with various tooth locations. In addition, these event time data are heavily censored, mostly because a certain proportion of teeth in the population are not expected to experience failure and can be considered ‘cured’. We assume a proportional hazards model with a surviving fraction to model these clustered correlated data and account for dependence between nearby teeth by using spatial frailties which are modelled as linear combinations of positive stable random effects. This model permits predictions (conditioned on spatial frailties) that account for the survival status of nearby teeth and simultaneously preserves the proportional hazards relationship marginally over the random effects for the susceptible teeth, allowing for interpretable estimates of the effects of risk factors on tooth loss. We explore the potential of this model via simulation studies and application to a real data set obtained from a private periodontal practice, and we illustrate its advantages over other competing models to identify important risk factors for tooth loss and to predict the remaining lifespan of a patient's teeth.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1111/rssc.2015.64.issue-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:64:y:2015:i:4:p:673-691
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().