Modelling the type and timing of consecutive events: application to predicting preterm birth in repeated pregnancies
Joanna H. Shih,
Paul S. Albert,
Pauline Mendola and
Katherine L. Grantz
Journal of the Royal Statistical Society Series C, 2015, vol. 64, issue 5, 711-730
Abstract:
type="main" xml:id="rssc12100-abs-0001">
Predicting the occurrence and timing of adverse pregnancy events such as preterm birth is an important analytical challenge in obstetrical practice. Developing statistical approaches that can be used to assess the risk and timing of these adverse events will provide clinicians with tools for individualized risk assessment that account for a woman's prior pregnancy history. Often adverse pregnancy outcomes are subject to competing events; for example, interest may focus on the occurrence of pre-eclampsia-related preterm birth, where preterm birth for other reasons may serve as a competing event. We propose modelling the type and timing of adverse outcomes in repeated pregnancies. We formulate a joint model, where types of adverse outcomes across repeated pregnancies are modelled by using a polychotomous logistic regression model with random effects, and gestational ages at delivery are modelled conditionally on the types of adverse outcome. The correlation between gestational ages conditional on the adverse pregnancies is modelled by the semiparametric normal copula function. We present a two-stage estimation method and develop the asymptotic theory for the estimators proposed. The model and estimation procedure proposed are applied to the National Institute of Child Health and Human Development consecutive pregnancies study data and evaluated by simulations.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1111/rssc.2015.64.issue-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:64:y:2015:i:5:p:711-730
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().