EconPapers    
Economics at your fingertips  
 

The use of heuristic optimization algorithms to facilitate maximum simulated likelihood estimation of random parameter logit models

Arne Hole and Hong Il Yoo

Journal of the Royal Statistical Society Series C, 2017, vol. 66, issue 5, 997-1013

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1111/rssc.12209 (text/html)
Access to full text is restricted to subscribers.

Related works:
Working Paper: The use of heuristic optimization algorithms to facilitate maximum simulated likelihood estimation of random parameter logit models (2014) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:66:y:2017:i:5:p:997-1013

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-24
Handle: RePEc:bla:jorssc:v:66:y:2017:i:5:p:997-1013