Domain‐selective functional analysis of variance for supervised statistical profile monitoring of signal data
Alessia Pini,
Simone Vantini,
Bianca Maria Colosimo and
Marco Grasso
Journal of the Royal Statistical Society Series C, 2018, vol. 67, issue 1, 55-81
Abstract:
In many applications, process monitoring has to deal with functional responses, which are also known as profile data. In these scenarios, a relevant industrial problem consists of detecting faults by combining supervised learning with functional data analysis and statistical process monitoring. Supervised learning is usually applied to the whole signal domain, with the aim of discovering the features that are affected by the faults of interest. We explore a different perspective, which consists of performing supervised learning to select inferentially the parts of the signal data that are more informative in terms of underlying fault factors. The procedure is based on a non‐parametric domain‐selective functional analysis of variance and allows us to identify the specific subintervals where the profile is sensitive to process changes. Benefits achieved by coupling the proposed approach with profile monitoring are highlighted by using a simulation study. We show how applying profile monitoring only to the identified subintervals can reduce the time to detect the out‐of‐control state of the process. To illustrate its potential in industrial applications, the procedure is applied to remote laser welding, where the main aim is monitoring the gap between the welded plates through the observation of the emission spectra of the welded material.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/rssc.12218
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:67:y:2018:i:1:p:55-81
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().