EconPapers    
Economics at your fingertips  
 

Modelling time varying heterogeneity in recurrent infection processes: an application to serological data

Steven Abrams, Andreas Wienke and Niel Hens

Journal of the Royal Statistical Society Series C, 2018, vol. 67, issue 3, 687-704

Abstract: Frailty models are often used in survival analysis to model multivariate time‐to‐event data. In infectious disease epidemiology, frailty models have been proposed to model heterogeneity in the acquisition of infection and to accommodate association in the occurrence of multiple types of infection. Although traditional frailty models rely on the assumption of lifelong immunity after recovery, refinements have been made to account for reinfections with the same pathogen. Recently, Abrams and Hens quantified the effect of misspecifying the underlying infection process on the basic and effective reproduction number in the context of bivariate current status data on parvovirus B19 and varicella zoster virus. Furthermore, Farrington, Unkel and their co‐workers introduced and applied time varying shared frailty models to paired bivariate serological data. In this paper, we consider an extension of the proposed frailty methodology by Abrams and Hens to account for age‐dependence in individual heterogeneity through the use of age‐dependent shared and correlated gamma frailty models. The methodology is illustrated by using two data applications.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/rssc.12236

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:67:y:2018:i:3:p:687-704

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:67:y:2018:i:3:p:687-704