EconPapers    
Economics at your fingertips  
 

Power and commensurate priors for synthesizing aggregate and individual patient level data in network meta‐analysis

Hwanhee Hong, Haoda Fu and Bradley P. Carlin

Journal of the Royal Statistical Society Series C, 2018, vol. 67, issue 4, 1047-1069

Abstract: In network meta‐analysis, it is often desirable to synthesize different types of studies, featuring aggregated data and individual patient level data. However, existing methods do not sufficiently consider the quality of studies across different types of data and assume that the treatment effects are exchangeable across all studies regardless of these types. We propose Bayesian hierarchical network meta‐analysis models that allow us to borrow information adaptively across aggregated data and individual patient level data studies by using power and commensurate priors. The power parameter in the power priors and spike‐and‐slab hyperprior in the commensurate priors govern the level of borrowing information among study types. We incorporate covariate‐by‐treatment interactions to deliver personalized decision making and model any ecological fallacy. The methods are validated and compared via extensive simulation studies and then applied to an example in diabetes treatment comparing 28 oral antidiabetic drugs. We compare results across model and hyperprior specifications. Finally, we close with a discussion of our findings, limitations and future research.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/rssc.12275

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:67:y:2018:i:4:p:1047-1069

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:67:y:2018:i:4:p:1047-1069