Temporal trends of biomarkers and between‐biomarker associations
Zonghui Hu
Journal of the Royal Statistical Society Series C, 2019, vol. 68, issue 1, 251-264
Abstract:
We are interested in the temporal trends of biomarkers that are related to disease progression, especially the association between two temporal trends. When biological mechanisms are lacking, no parametric forms of the temporal trends are theoretically justified. In this work, we adopt joint non‐parametric local linear mixed effects modelling. By local linear regression, each temporal trend is represented by its magnitude and slope (the primary interest in medical studies) which both change with time. By mixed effects modelling, we take care of data sparsity within each subject and the large subject‐to‐subject variability. The association between two temporal trends is evaluated by the correlation coefficient matrix, assessing association in terms of both the magnitude and the slope. The joint modelling enables evaluation of the association as a continuous function of time, even if one or neither biomarker is observed at some specific time points. We apply the method proposed to a study of human immunodeficiency virus patients following anti‐retroviral therapy until viral suppression. We find that associations between some biomarkers change over time, reflecting potentially changing stages of disease.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssc.12290
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:68:y:2019:i:1:p:251-264
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().