EconPapers    
Economics at your fingertips  
 

Landmark linear transformation model for dynamic prediction with application to a longitudinal cohort study of chronic disease

Yayuan Zhu, Liang Li and Xuelin Huang

Journal of the Royal Statistical Society Series C, 2019, vol. 68, issue 3, 771-791

Abstract: Dynamic prediction of the risk of a clinical event by using longitudinally measured biomarkers or other prognostic information is important in clinical practice. We propose a new class of landmark survival models. The model takes the form of a linear transformation model but allows all the model parameters to vary with the landmark time. This model includes many published landmark prediction models as special cases. We propose a unified local linear estimation framework to estimate time varying model parameters. Simulation studies are conducted to evaluate the finite sample performance of the method proposed. We apply the methodology to a data set from the African American Study of Kidney Disease and Hypertension and predict individual patients’ risk of an adverse clinical event.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/rssc.12334

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:68:y:2019:i:3:p:771-791

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:68:y:2019:i:3:p:771-791