EconPapers    
Economics at your fingertips  
 

Bayesian inference for stochastic differential equation mixed effects models of a tumour xenography study

Umberto Picchini and Julie Lyng Forman

Journal of the Royal Statistical Society Series C, 2019, vol. 68, issue 4, 887-913

Abstract: We consider Bayesian inference for stochastic differential equation mixed effects models (SDEMEMs) exemplifying tumour response to treatment and regrowth in mice. We produce an extensive study on how an SDEMEM can be fitted by using both exact inference based on pseudo‐marginal Markov chain Monte Carlo sampling and approximate inference via Bayesian synthetic likelihood (BSL). We investigate a two‐compartments SDEMEM, corresponding to the fractions of tumour cells killed by and survived on a treatment. Case‐study data consider a tumour xenography study with two treatment groups and one control, each containing 5–8 mice. Results from the case‐study and from simulations indicate that the SDEMEM can reproduce the observed growth patterns and that BSL is a robust tool for inference in SDEMEMs. Finally, we compare the fit of the SDEMEM with a similar ordinary differential equation model. Because of small sample sizes, strong prior information is needed to identify all model parameters in the SDEMEM and it cannot be determined which of the two models is the better in terms of predicting tumour growth curves. In a simulation study we find that with a sample of 17 mice per group BSL can identify all model parameters and distinguish treatment groups.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/rssc.12347

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:68:y:2019:i:4:p:887-913

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:68:y:2019:i:4:p:887-913