EconPapers    
Economics at your fingertips  
 

Bayesian uncertainty‐directed dose finding designs

I. Domenicano, S. Ventz, M. Cellamare, R. H. Mak and L. Trippa

Journal of the Royal Statistical Society Series C, 2019, vol. 68, issue 5, 1393-1410

Abstract: We introduce Bayesian uncertainty‐directed (BUD) designs for phase I–II dose finding trials. This class of designs assigns patients to candidate dose levels with the aim of maximizing explicit information metrics at completion of the trial, while avoiding the treatment of patients with toxic or ineffective dose levels during the trial. Explicit information metrics provide, at completion of the clinical study, accuracy measures of the final selection of optimal or nearly optimal dose levels. The BUD approach utilizes the decision theoretic framework and builds on utility functions that rank candidate dose levels. The utility of a dose combines the probabilities of toxicity events and the probability of a positive response to treatment. We discuss the application of BUD designs in two distinct settings; dose finding studies for single agents and precision medicine studies with biomarker measurements that allow dose optimization at the individual level. The approach proposed and the simulation scenarios used in the evaluation of BUD designs are motivated by a stereotactic body radiation therapy study in lung cancer at our institution.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/rssc.12355

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:68:y:2019:i:5:p:1393-1410

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:68:y:2019:i:5:p:1393-1410