Multiple imputation of binary multilevel missing not at random data
Angelina Hammon and
Sabine Zinn
Journal of the Royal Statistical Society Series C, 2020, vol. 69, issue 3, 547-564
Abstract:
We introduce a selection model‐based multilevel imputation approach to be used within the fully conditional specification framework for multiple imputation. Concretely, we apply a censored bivariate probit model to describe binary variables assumed to be missing not at random. The first equation of the model defines the regression model for the missing data mechanism. The second equation specifies the regression model of the variable to be imputed. The non‐random selection of the binary data is mapped by correlations between the error terms of the two regression models. Hierarchical data structures are modelled by random intercepts in both equations. To fit the novel imputation model we use maximum likelihood and adaptive Gauss–Hermite quadrature. A comprehensive simulation study shows the overall performance of the approach. We test its usefulness for empirical research by applying it to a common problem in social scientific research: the emergence of educational aspirations. Our software is designed to be used in the R package mice.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/rssc.12401
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:69:y:2020:i:3:p:547-564
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().