EconPapers    
Economics at your fingertips  
 

An optimal design for hierarchical generalized group testing

Yaakov Malinovsky, Gregory Haber and Paul S. Albert

Journal of the Royal Statistical Society Series C, 2020, vol. 69, issue 3, 607-621

Abstract: Choosing an optimal strategy for hierarchical group testing is an important problem for practitioners who are interested in disease screening with limited resources. For example, when screening for infectious diseases in large populations, it is important to use algorithms that minimize the cost of potentially expensive assays. Black and co‐workers described this as an intractable problem unless the number of individuals to screen is small. They proposed an approximation to an optimal strategy that is difficult to implement for large population sizes. We develop an optimal design with respect to the expected total number of tests that can be obtained by using a novel dynamic programming algorithm. We show that this algorithm is substantially more efficient than the approach that was proposed by Black and co‐workers. In addition, we compare the two designs for imperfect tests. R code is provided for practitioners.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/rssc.12409

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:69:y:2020:i:3:p:607-621

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:69:y:2020:i:3:p:607-621