EconPapers    
Economics at your fingertips  
 

A novel regularized approach for functional data clustering: an application to milking kinetics in dairy goats

C. Denis, E. Lebarbier, C. Lévy‐Leduc, O. Martin and L. Sansonnet

Journal of the Royal Statistical Society Series C, 2020, vol. 69, issue 3, 623-640

Abstract: Motivated by an application to the clustering of milking kinetics of dairy goats, we propose a novel approach for functional data clustering. This issue is of growing interest in precision livestock farming, which is largely based on the development of data acquisition automation and on the development of interpretative tools to capitalize on high throughput raw data and to generate benchmarks for phenotypic traits. The method that we propose in the paper falls in this context. Our methodology relies on a piecewise linear estimation of curves based on a novel regularized change‐point‐estimation method and on the k‐means algorithm applied to a vector of coefficients summarizing the curves. The statistical performance of our method is assessed through numerical experiments and is thoroughly compared with existing experiments. Our technique is finally applied to milk emission kinetics data with the aim of a better characterization of interanimal variability and towards a better understanding of the lactation process.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/rssc.12404

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:69:y:2020:i:3:p:623-640

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:69:y:2020:i:3:p:623-640